- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bourlai, Thirimachos (1)
-
Martin, Michael (1)
-
Metaxas, Dimitris (1)
-
Narang, Neeru (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we propose a convolutional neural network (CNN) based, scenario-dependent and sensor (mobile device) adaptable hierarchical classification framework. Our proposed framework is designed to automatically categorize face data captured under various challenging conditions, before the FR algorithms (pre-processing, feature extraction and matching) are used. First, a unique multi-sensor database (using Samsung S4 Zoom, Nokia 1020, iPhone 5S and Samsung S5 phones) is collected containing face images indoors, outdoors, with yaw angle from -90 to +90 and at two different distances, i.e. 1 and 10 meters. To cope with pose variations, face detection and pose estimation algorithms are used for classifying the facial images into a frontal or a non-frontal class. Next, our proposed framework is used where tri-level hierarchical classification is performed as follows: Level 1, face images are classified based on phone type; Level 2, face images are further classified into indoor and outdoor images; and finally, Level 3 face images are classified into a close (1m) and a far, low quality, (10m) distance categories respectively. Experimental results show that classification accuracy is scenario dependent, reaching from 95 to more than 98% accuracy for level 2 and from 90 to more than 99% for level 3 classification. A set of experiments is performed indicating that, the usage of data grouping before the face matching is performed, resulted in a significantly improved rank-1 identification rate when compared to the original (all vs. all) biometric system.more » « less
An official website of the United States government
